
Poster Proceedings of Pacific Graphics (2008)
T. Igarashi, N. Max, and F. Sillion (Editors)

Effective Load Management Technique for AI Characters in
Games

Brian Tan†1 and Gabriyel Wong‡1

1Nanyang Technological University, Singapore

Abstract

Creating large populations of AI characters for game environment is a major challenge because either insufficient
CPU processing time is available or it is difficult to balance the computational needs of the game AI against the
requirements of other game components. We present a novel technique that allows games to manage the functional
updates of AI characters efficiently during runtime. The technique is an enhancement of the elastic task model and
scheduling [BLCA02] which allows the total CPU utilization of the AI characters to be adjusted to the current
workload of the game. We exploited the elastic nature of the technique to provide Level of Detail (LOD) effect for
the AI characters. A prototype implementation on Microsoft Xbox 360 hardware is described in this paper.

Categories and Subject Descriptors(according to ACM CCS): F.2.2 [Nonnumerical Algorithms and Problems]:
Sequencing and Scheduling I.2.1 [Artificial Intelligence]: Games

1. Introduction

Artificial Intelligence (AI) characters are computer-
controlled virtual characters in games that are part of many
engaging games. Depending on the design of the game,
these AI characters could range from herds of wildlife in
natural environments to pedestrians or vehicular traffic in
urban settings.

Many real-time virtual worlds do not look natural either
because there are too few AI characters or the behaviours of
these characters are too rudimentary until they seem unreal-
istic to the human players [NG05]. This is because human
players are accustomed to vibrant, dynamic and busy real
world environments resulting in similar virtual environments
which are sparsely-populated to look unnatural.

In this paper we present a novel technique to manage the
computational load of a large population of AI characters
which is independent of the actual AI routine utilized and
provide the benefit of adaptive response to transient fluctua-
tions in the CPU utilization of the game.

† TANK0108@ntu.edu.sg
‡ ckwong@ntu.edu.sg

2. Related Works

It is difficult to implement a large number and variety of
AI characters in games when the computational resources
available for game AI processing is limited. Level of de-
tail (LOD) approaches have been used in games as solu-
tions for handling this particular problem. Similar to appli-
cations of LOD in computer graphics, LOD for game AI
is a view-dependent technique that relies on hiding com-
putationally expensive details that the player cannot detect
by using impostors or proxies for the less-visible charac-
ters [DHOO05,KDC∗08], simplified shortcuts for the game-
play processing required [Bro02] or switching between re-
active and proactive behaviours [NG05]. These technique
share one common feature, they create different LOD by
providing different versions of the same targeted feature (ge-
ometrical model, behavioural simulation or animation) with
different degrees of simplification.

Implementing LOD in the manner described above re-
quires the game developer to create different versions of the
AI routines in addition to the originals. The amount of devel-
opment effort is thus increased multiple-fold which makes it
challenging for game developers facing tight deadlines. An
alternative approach is to design the AI workload as process-

c© 2008 The Author(s)

Brian Tan & Gabriyel Wong / Load Management Technique for AI Characters

ing tasks that can be managed and scheduled efficiently dur-
ing runtime [WM00,Ale02,McL02]. This has the added ad-
vantage of good control over the amount of processing time
consumed by the game AI.

Much research work have been carried out in the field of
real time systems and task scheduling. We see the oppor-
tunity to tap this reserve of research work for the purpose
of creating a load management system for AI characters.
We are particularly interested in the elastic task model in-
troduced and studied extensively in real-time system litera-
tures [BA02,BLCA02,CHL06], which has the flexibility of
adapting to changes in the overall workload.

3. Requirements for scheduling AI execution in games

This section outlines the different challenges facing game
developers when they need to optimize the performance of
AI characters in games. The technique proposed in this paper
is designed to meet the requirements outlined in this section.

3.1. Conformance to timing constraints

Frame rate of games need to be maintained at a minimum of
30 display frames per second if not higher, as lower frame
rates decreases the visual quality and responsiveness of the
game. In order to meet this requirement, the time allowed for
all manners of processing required has to be limited to 33
milliseconds or less. The processing time allowed per frame
is divided and distributed to each of the different game tasks;
physics simulation, gameplay logic, player inputs, rendering
and game AI. Each of the game tasks or components must
conform to its given CPU time budget for the game to main-
tain a stable and high frame rate.

Therefore, it is important that any solution aimed at tack-
ling the issue of game AI performance must be able to make
the total processing time of the AI characters conform to the
timing constraint imposed upon it. Failure to do so would
have a negative effect on the frame rate of the game.

3.2. Effective utilization of the limited CPU processing
time allocated

Typically, only 30 percent of the CPU time budget is allo-
cated to game AI as cited in the 2000 Game Development
Conference (GDC 2000) AI polls [Woo00]. This limited al-
location is not enough to create the beautiful and vibrant vir-
tual environments demanded by players. Large numbers of
AI characters of different types and believable behaviours
are needed to effectively populate a virtual environment thus
making it an uphill struggle to provide the best possiblequal-
ity of servicewhile conforming to the limited CPU time bud-
get. Thequality of servicecan be any performance metric
that the developer wish to optimize: animation quality, inter-
actions with the AI characters, minimum number of errors
et cetera. The key lies in distributing the limited CPU time

budget to maintain the visual quality and interactiveness of
the AI characters. This calls for a level of detail approach or
a technique that would provide a similar effect.

3.3. Compatibility with different AI techniques

The different variety of AI characters also calls for dif-
ferent techniques to be used for its implementation. For
example, ReynoldŠs flocking techniques [Rey87, Rey06]
may be suitable for flocks of birds, herds of herbivores or
schools of fishes, but human crowds and groups would uti-
lize techniques from a totally different pool of research work
[MUAT05, TCP06, RD05]. The same can be said for ambi-
ent traffic and pedestrians [BCKW98, dSM06]. Taking into
consideration the wealth of AI techniques that can be used
by the game developers, any solution that intends to be ap-
plicable to the different varieties of AI characters have to be
independent of the underlying techniques. It should make lit-
tle or no assumptions about the nature of the underlying AI
code.

3.4. Runtime response to transient fluctuations in game
workload

Even as game developers make an effort to adhere to the
specified CPU time budgets, fluctuations in processing time
can still occur during runtime. These fluctuations could orig-
inate from within the game AI itself or from other game
components. Computationally heavy game components like
physics simulation, rendering and game AI are vulnerable
to major changes in the game scene. For example, a major
car crash in a racing game involving a large number of vehi-
cles would cause a major spike in processing time used for
collision detection and response. In such transient overload
situations, it would be advantageous if the processing load
of the AI characters can be throttled up or down to respond
to these dynamic changes.

4. Effective load management technique for AI
characters

Figure1 shows an overview of the load management tech-
nique. The AI LOD (Level of Detail) system provide a LOD
value for each of the AI characters that indicates the impor-
tance of the AI characters. Using the LOD values and the
current CPU utilization of the game, the scheduler calculates
the optimal execution periods of the AI characters. Execu-
tion of the tasks (AI characters’ updates) is the responsibil-
ity of the task manager. In addition, the task manager will
ensure that the time budget per frame is not exceeded by de-
laying the update of the AI characters if the processing time
remaining is inadequate.

4.1. The elastic task model

An elastic model is introduced by Buttazzo et al. where tasks
are modeled as a spring system where increasing or decreas-

c© 2008 The Author(s)

Brian Tan & Gabriyel Wong / Load Management Technique for AI Characters

Figure 1: Overview of the proposed technique.

ing a task period is analogous to the compression or decom-
pression of a spring [BLCA02]. Each taskτi is characterized
by five parameters:

τi(Ci ,Ti ,Tio,Timax,Ei) for i = 1, ...,N (1)

where N is the number of tasks in the system. Computation
time Ci is the execution time of taskτi . The nominal pe-
riod Tio and maximum periodTimax denote the minimum and
maximum boundaries of the task periodTi . The most desir-
able output is perceived when the task is updated at the nom-
inal periodTio. The elasticity coeffecientEi represents the
resistance of the taskτi to increasing its period. The larger
the value ofEi , the more elastic the task is thus the bigger
the increase in its execution period when system workload
increases.

The CPU utilization factor of the periodic task is defined
as:

Ui =
Ci

Ti
(2)

and the total utilization of the sytem of n processing tasks as:

Up =
n

∑
i=1

Ui (3)

The elastic task model can be used for AI characters
because the updates of AI characters are periodic in na-
ture. Every AI characters have to retrieve information from
the game environment (Sense), process this information
(Think) and produce a reaction (React) at a certain rate
[vLLB∗99, Nar02]. The rate of update can be different for
each of the AI characters and degradation of quality when
the execution frequencies are reduced would not introduce
critical errors into the game. AI characters may become un-
responsive or display incorrect behaviours but these prob-
lems do not change the outcome of the game itself.

The computation timeCi of each AI character’s be-
havioural updates are tracked in real-time to provide an ac-
curate measure of how much computational power is used
by the AI characters. The LOD value of the AI characters
is used as the elastic coefficient factor for the AI characters.
For the purpose of discussion in this paper, the termtask
would be defined as the periodic update function of each AI
character in a game.

4.2. AI level of detail (LOD)

LOD algorithms in AI are similar to the LOD used in graph-
ics programming. The common concept here is to allocate
more computing time to AI characters that are most impor-
tant from the player’s perspective [Mil06]. An effective LOD
algorithm can be provided simply by varying the update fre-
quency of each AI characters based on its importance. Im-
portant characters can received more processing time by be-
ing scheduled to update more frequently. This is the basis of
theScheduling LOD[Mil06].

In our approach, the distance of the AI character to the
camera is utilized as the elasticity coefficient factor of the AI
character. This also corresponds to the importance of the AI
characters and subsequently the LOD as well. The larger the
distance, the less important the AI character. This method
is lightweight enough to allow the value to be recalculated
every frame.

Unfortunately, this straightforward approach may not be
suitable for certain scenarios. Additional parameters such as
the visibility of the AI characters may need to be consid-
ered [NG05]. In cases where the camera distance and visi-
bility tests are not adequate, the LOD value can be further
fine-tuned by taking into considerations of game specifics
information such as:

c© 2008 The Author(s)

Brian Tan & Gabriyel Wong / Load Management Technique for AI Characters

a) Type. Different techniques may be used to implement
the behaviours of the different types of AI characters. If
the underlying technique is vulnerable to produce low
quality result when executing at low frequencies, it would
help if these AI characters are given higher priorities.

b) Size. The details of a larger AI character are more visible
to the human player. In contrast, a smaller AI character
may not be as obvious. Therefore, comparatively smaller
sized AI characters can be allocated less computation
time.

c) Interactivity . If the AI characters are meant to be highly
interactive and responsive to the human player, then these
characters should be allocated higher update frequencies
to ensure that it respond to the human player in a timely
manner.

The task of providing this heuristic depends heavily on
the game specifics and context. Therefore, the derivation of
the LOD value should be customized to suit the game if nec-
essary.

4.3. Calculating the task periods

The scheduler receives three input parameters: the list of
tasksΓ, processing time allowed per frameTd and the frame
time (total time taken for processing since the previous game
frame)Tf . The desired utilization factor that the AI charac-
ters are allowed to consume is defined as:

Ud = Td/Tf (4)

The total nominal utilizationUo is defined as the total sum
of the tasks’ nominal utilization factors and the sum of task
elasticity coefficient factorsEv is initialized to the total sum
of the elasticity coefficient factors of all tasks.

U0 =
N

∑
i=1

Ci/Tio (5)

Ev =
N

∑
i=1

Ei (6)

Using the analogy of a spring system, we assume that all
springs are in the uncompressed state initially and the com-
pression is performed on the spring system from this initial
state of rest. When applied to the AI tasks, the utilization
factors of all tasks are set at their nominal values before the
elastic compression algorithm is performed. Therefore, the
total utilization factor of fully compressed tasksU f is set to
zero and the total nominal utilization factor of the set of tasks
undergoing compressionUvo is initialize asU0.

This modification differentiates our technique from the
original algorithm. Buttazzo et al.’s algorithm is more suit-
able for fixed priority scheduling where the coefficient fac-
tors are pre-assigned and remains static [BLCA02]. In con-
stant overload conditions, the task periods of the set of fully-
compressed tasks would remain unchanged at their maxi-
mum valuesTimax. This would result in priority inversion,
where AI characters of growing importance are not sched-
uled to update at shorter time intervals because of the amount
of compression applied to the corresponding AI task. Our
modification allow AI characters of higher importance to be
re-assigned smaller periods regardless of the amount of com-
pression applied to the tasks. This maintains the level of de-
tails (LOD) effect for the different AI characters.

Another major difference is when a feasible schedule can-
not be found, new incoming tasks are not rejected. When
the scheduler is unable to meet the desired utilization factor,
CPU utilization factors of all AI tasks would be fully com-
pressed to their minimum values. We expect such conditions
to be rare and transient in nature, therefore the best effort
approach utilized here would be preferable to rejecting the
addition of new AI characters into the game world.

The algorithm to calculate the task periods for the func-
tional updates of AI characters is shown in Figure2.

4.4. Task execution and limiting processing time per
frame

In a conventional game loop, the update frequencies of all
game components are the same as the frame rate of the game.
Therefore, we decoupled the simulation time from the ac-
tual real time by using an approach similar to the concept of
“virtual time” [HM02]. To the task manager, simulation time
Tsimul is just a numeric value that can compared, manipu-
lated and computed independently of the actual real time. At
the end of every game frame, the time elapsed which is the
frame timeTf is calculated and used to advance the simula-
tion timeTsimul. This allows independent update frequencies
for each AI task as well as finer control of the task periods.

Each taskτi maintains 3 additional execution parameters:
the next simulation time that the task is due to executeTnexti,
the last simulation time that the task has executedTlasti and
the number of time the execution of the task has been de-
layed by the task managerMi . The elapsed time perceived
by each taskτi is simply the value ofTnexti−Tlasti.

The task model as seen from the perspective of the task
manager:

τi(Ci ,Ti ,Tnexti,Tlasti,Mi) for i = 1, ...,N (7)

In every frame, the task manager determines the list of
tasks due for executionΓ f rameby comparing the next execu-
tion timeTnexti with the current simulation timeTsimul. Then

c© 2008 The Author(s)

Brian Tan & Gabriyel Wong / Load Management Technique for AI Characters

ElasticTaskCompression (Γ, Td, Tf)

Ud = Td/Tf

Uo = ∑N
i=1Ci/Tio

InitialState = 1
Do {

U f = Ev = 0
For eachτi in Γ {

If (Ti < Timax Or InitialState == 1)
Ev = Ev +Ei

Else
U f = U f +Ui

}
ok = 1
If (Ev > 0) {

Uvo = Uo−U f
For eachτi in Γ {

If (Ti < Timax Or InitialState == 1) {
Ui = Uio − (Uvo−Ud +U f)(Ei/Ev)
If (Ti > Timax) {

Ti = Timax
ok = 0

}
Else

Ti = Timax
}

}
}
InitialState = 0

} While (ok == 0)

Figure 2: Algorithm for calculating the task periods.

the list of tasks is sorted byMi and then by the time elapsed
(Tnexti− Tlasti). Tasks which has been delayed the highest
number of times (largestMi) will execute first followed by
tasks with the largest time elapsed. Ordering the list of tasks
in this manner ensures that delayed tasks are given priority
for execution and prevent starvation of lower priority tasks
with larger execution period when the processing time bud-
getTd is not adequate for the processing requirements of the
all the tasks scheduled for the current frame.

The algorithm to manage the execution of the tasks is
shown in Figure3.

5. Experiments and results

The prototype is implemented using a proprietary commer-
cial game engine which runs on the Microsoft Xbox 360
hardware. The game engine is configured to run a test simu-
lation of a typical North American desert environment. The
environment includes four different types of wildlife ani-

ManageTaskExecution (Γ, Td, Tf , Tsimul)

Tsimul = Tsimul+Tf Γ f rame= emptyset
For eachτi in Γ {

If (Tnexti≤ Tsimul)
Γ f rame= Γ f rame+ τi }

Sort tasks in Γ f rame by Mi descending
and by (Tnexti−Tlasti descending ifMi are equal)
For eachτi in Γ f rame {

If (Ci ≤ Td) {
Execute taskτi
Td = Td +Ci

}
Else{

Mi = Mi +1
Tnexti = Tsimul

}
}

Figure 3: Algorithm for managing the execution of tasks in
every frame.

mats; wild hares, javelinas, groundhogs and bobcats with 25
animats for each type making a total of 100 animats. State
machines containing the behaviours and animation for each
wildlife type are defined using scripts. These forms the bulk
of the processing contained within the update function of the
wildlife animats. Therefore, when we apply the load man-
agement technique to these 100 wildlife animats to manage
the execution of their update function we noticed changes
in the animation quality of the wildlife animats as quality
is traded for performance and vice-versa by the technique.
Figure4 shows a screenshot of the simulation.

Figure 4: Simulation of 100 wildlife animats

All the tasks (wildlife animats) are assigned the schedul-
ing parameters displayed in Table1.

Two series of experiments were performed on the simu-

c© 2008 The Author(s)

Brian Tan & Gabriyel Wong / Load Management Technique for AI Characters

Parameter Name Value
Nominal Task PeriodTio 33.33 ms
Maximum Task PeriodTimax 80.0 ms
Elastic Coefficient FactorEi 1
Computation TimeCi 0.0 ms

Table 1: Scheduling Parameters

lation. First, we investigate the effect of assigning different
processing time budget per frameTd. Second, an extra pro-
cessing load is induced to increase the frame timeTf . We
observed and study the reaction of the simulation while un-
der the influence of the load management technique.

5.1. Load management under different time constraints

The best quality in animation is perceived when all the an-
imats are executing at their nominal task periods which is
33.33 ms. The elastic scheduling would try to minimize the
pertubations of the task periods from their nominal values in
order to maximize the quality of service. Therefore, a mea-
sure of the quality of service shown by the simulation can
be formulated as the deviation of the task periods from their
nominal values. The absolute deviation of the task periods
from its nominal values for N number of tasks is defined as:

Di = Ti −Tio (8)

Dperiod =
1
N

N

∑
i=1

Di (9)

The performance of the simulation under three different
processing time constraints (per frame): 10.0 ms, 20.0 ms
and 30.0 ms is shown in Table2.

Td Ctotal Utotal Dperiod FPS Overhead
(ms) (ms) (ms)
10.0 10.07 0.4618 47.9289 44.64 0.1194
20.0 16.745 0.5507 36.9175 32.69 0.2139
30.0 28.155 0.7514 16.2765 26.73 0.1616

Table 2: Performance evaluation of the technique when sub-
jected to different processing time constraints. Data shown
are average values

The results shows that the total computation time of the
simulation is restrained to comply with the user-specified
limits. This contributes to a higher and more stable frame
rate in the game. The proposed technique is also very effi-
cient and consumes minimal overheads (approximately 0.2
ms or less).

However, reducing the processing time budget per frame
Td comes at the cost of higher deviation of the task periods
Dperiod. This correlates with degradations in the quality of

the wildlife animats’ animation during visual inspection of
the simulation.

5.2. Response to fluctuations in processing time (frame
rate)

In this experiment, the processing time budget is set at 30.0
ms per frame and an additional load is induced from sample
frame 200 to sample frame 400, to increase the time taken
to complete iterations of the game loop. This allows us to
investigate the response of the load management technique
when subjected to an external load.

The graphs in Figure5(a) shows that the total computa-
tion time Ctotal of the wildlife animats remains fairly sta-
ble at 30.0 ms per frame even when the additional load is
induced. This is achieved by reducing the total utilization
factorUtotal of the wildlife animats for the duration of the
additional system load (see Figure5(b)). Such mechanism is
useful to reduce the impact on the controlled module from
other game components’ workload.

6. Limitations and future work

Our proposed technique assumes that increasing the time
interval between executions of the AI characterŠs update
function would not result in an increase of the computation
time required. If this is not true, the overload situation may
worsen as the processing time of each compressed task in-
creases. This is possible when the underlying AI technique
breaks the time elapsed into smaller time steps to be fed
into a simulation loop. Larger time intervals would result
in more time steps being generated and subsequently longer
time spent in the simulation loop. In such scenarios, the tech-
nique becomes counterproductive to the effort of reducing
the CPU utilization of the AI characters. We are currently
investigating measures that can be used to mitigate this ef-
fect.

Finally, we are working to extend the technique to cre-
ate a complete framework to manage the computational re-
quirements of game AI. The final framework would be com-
patible and increase the effectiveness of optimization tech-
niques that target the actual AI algorithm such as Anytime
Algorithms [GZ95,Gra96]. Similar to Wright and Marshall’s
effort in creating a general-purpose framework for game
AI processing, advanced capabilities like different execution
methods and minimising the number of tasks scheduled for
each individual frames [WM00] would be part of this frame-
work that we are creating.

7. Conclusions

We have presented an efficient and effective technique to
manage the computational load of AI characters in games.

c© 2008 The Author(s)

Brian Tan & Gabriyel Wong / Load Management Technique for AI Characters

By using our technique, AI processing becomes more re-
silient to transient changes in game workload and the pro-
cessing time required per frame can be constrained accord-
ing to user specifications. This results in better predictabil-
ity and stability in the runtime performance of games. The
implementation of our technique is designed to be nonintru-
sive and compatible with the architectures of existing games,
making it easier for game developers to integrate and use.

We believe that the technique presented serves as a valu-
able tool for game developers to manage the computational
load of AI characters in games. Although the need for proper
profiling and manual optimizations are not totally removed,
the effort required to maintain the delicate balance of perfor-
mance and quality is significantly lower.

References

[Ale02] ALEXANDER B.: An architecture based on load
balancing.AI Game Programming Wisdom(2002), 298–
304.

[BA02] BUTTAZZO G., ABENI L.: Adaptive workload
management through elastic scheduling.Real-Time Syst.
23, 1-2 (2002), 7–24.

[BCKW98] BONAKDARIAN E., CREMER J., KEARNEY

J., WILLEMSEN P.: Generation of ambient traffic for real-
time driving simulation. InProceedings of 1998 Image
Conference(1998).

[BLCA02] BUTTAZZO G., LIPARI G., CACCAMO M.,
ABENI L.: Elastic scheduling for flexible workload man-
agement.Computers, IEEE Transactions on 51, 3 (2002),
289–302.

[Bro02] BROCKINGTON M.: Level-of-detail ai for a
large role-playing game.AI Game Programming Wisdom
(2002), 419–425.

[CHL06] CHANTEM T., HU X. S., LEMMON M.: Gen-
eralized elastic scheduling.Real-Time Systems Sympo-
sium, 2006. RTSS ’06. 27th IEEE International(2006),
236–245.

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K.,
O’SULLIVAN C.: Geopostors: a real-time geometry / im-
postor crowd rendering system. InI3D ’05: Proceedings
of the 2005 symposium on Interactive 3D graphics and
games(New York, NY, USA, 2005), ACM, pp. 95–102.

[dSM06] DA SILVEIRA L. G., MUSSE S. R.: Real-time
generation of populated virtual cities. InVRST ’06: Pro-
ceedings of the ACM symposium on Virtual reality soft-
ware and technology(New York, NY, USA, 2006), ACM,
pp. 155–164.

[Gra96] GRASS J.: Reasoning about computational re-
source allocation.Crossroads 3, 1 (1996), 16–20.

[GZ95] GRASS J., ZILBERSTEIN S.: Anytime Algorithm
Development Tools. Tech. rep., Amherst, MA, USA,
1995.

[HM02] HARVEY M., MARSHALL C. S.: Scheduling
game events.Game Programming Gems 3(2002), 5–14.

[KDC∗08] KAVAN L., DOBBYN S., COLLINS S., ŽÁRA

J., O’SULLIVAN C.: Polypostors: 2d polygonal impos-
tors for 3d crowds. InSI3D ’08: Proceedings of the 2008
symposium on Interactive 3D graphics and games(New
York, NY, USA, 2008), ACM, pp. 149–155.

[McL02] M CLEAN A. W.: An efficient ai architecture us-
ing prioritized task categories.AI Game Programming
Wisdom(2002), 290–297.

[Mil06] M ILLINGTON I.: Artificial Intelligence for Games
(The Morgan Kaufmann Series in Interactive 3D Technol-
ogy). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2006.

[MUAT05] M USSE S. R., ULICNY B., AUBEL A.,
THALMANN D.: Groups and crowd simulation. InSIG-
GRAPH ’05: ACM SIGGRAPH 2005 Courses(New York,
NY, USA, 2005), ACM, p. 2.

[Nar02] NAREYEK A.: Review: Intelligent agents for
computer games. InCG ’00: Revised Papers from the Sec-
ond International Conference on Computers and Games
(London, UK, 2002), Springer-Verlag, pp. 414–422.

[NG05] NIEDERBERGERC., GROSSM.: Level-of-detail
for cognitive real-time characters.The Visual Computer
21, 3 (4 2005), 188–202.

[RD05] RYDER G., DAY A. M.: Survey of real-time ren-
dering techniques for crowds.Computer Graphics Forum
24, 2 (2005), 203–215.

[Rey87] REYNOLDS C. W.: Flocks, herds and schools:
A distributed behavioral model. InSIGGRAPH ’87:
Proceedings of the 14th annual conference on Com-
puter graphics and interactive techniques(New York, NY,
USA, 1987), ACM, pp. 25–34.

[Rey06] REYNOLDS C.: Big fast crowds on ps3. In
sandbox ’06: Proceedings of the 2006 ACM SIGGRAPH
symposium on Videogames(New York, NY, USA, 2006),
ACM, pp. 113–121.

[TCP06] TREUILLE A., COOPERS., POPOVIĆ Z.: Con-
tinuum crowds.ACM Trans. Graph. 25, 3 (2006), 1160–
1168.

[vLLB ∗99] VAN LENT M., LAIRD J., BUCKMAN J.,
HARTFORD J., HOUCHARD S., STEINKRAUS K.,
TEDRAKE R.: Intelligent agents in computer games. In
AAAI ’99/IAAI ’99: Proceedings of the sixteenth national
conference on Artificial intelligence and the eleventh In-
novative applications of artificial intelligence conference
innovative applications of artificial intelligence(Menlo
Park, CA, USA, 1999), American Association for Arti-
ficial Intelligence, pp. 929–930.

[WM00] WRIGHT I., MARSHALL J.: Egocentric ai pro-
cessing for computer entertainment: A real-time process
manager for games.Game-On 2000, 1st International

c© 2008 The Author(s)

Brian Tan & Gabriyel Wong / Load Management Technique for AI Characters

(a)

(b)

Figure 5: (a) Processing time consumed by the wildlife animats and the game frame time. (b) Changes in the CPU utilization.

Conference on Intelligent Games and Simulation(2000),
42–46.

[Woo00] WOODCOCK S.: Game ai: The state of the in-
dustry.Game Developer(2000).

c© 2008 The Author(s)

