Monthly Report : Real-time Global illumination techniques for outdoor lighting:

- 1) Dynamic Rendering Outdoor Light Scattering in Real Time Naty Hoffman
- Rendering Atmospheric Light Scattering over time, weather and pollution.
- Dealing with Absorption, Out-scattering, In-scattering.

Rayleigh Scattering

Mie scattering approximation

- 2) Ambient Aperture lighting
- Using pre-computed visibility information to calculate shadows (Hard + soft) _
- Similar to horizontal mapping but allows for area light source (circular) -
- Soft shadow is computed by intersecting visible area and light source area. -

Result : top exact result – bottom approximate result.

- 3) Crytex real-time Ambient Occlusion
- General Concept:
 - Update, reconstruct AO real-time based on: position, normal, light color with relative attenuation radius.
 - Geometry Occlusion is preprocessed \rightarrow limitation: works for only static scene and memory consuming.
 - Advantages : dynamic AO lighting

- 4) Ambient Occlusion Fields:
- Idea: compute the shadow cast by an occluder at an arbitrary position and surface orientation in the neighborhood:
 - Pre-pocessing: Approximate occluder with an spherical cap direction and solid angle. (for each position, storing a pair of solid angle - $\Omega(x)$ and direction Y(x))

• Runtime: determine AO levels by projecting current rendering position into cube map and fetch the pair of pre-computed solid angle - $\Omega(x)$ and direction Y(x)

- \circ Limitation :
 - In order to approximate occluder projected volume onto spherical cap needs a lot of pre-computed solid angle Ω(x) and direction Y(x) → slow for complex objects.
- Result :

- 5) Faster precomputed AO for Proximity shadows:
 - a. Extend the "Ambient Occlusion Fields" from cube map \rightarrow 3D texture.
 - b. Instead of storing the direction and solid angle, storing single percentage of occlusion instead.

c. Optimize storage by using elongated box – reduce memory needed:

		Г	_	_	_	_	٦	ŕ			
								Z	4.		
						r_{L}	. [Ľ.e		
		_				_					
		1			_	_	•		- 6	7	•
			2	-1	11/	4.0	»	F	- 6	-	,
		0	Do	cl	u	de	• 1	ļ	- 6	-	•
		0	De	cl	u	de	* 1	ļ	- 6		•
		0	Do	cl	u	de	*	,	- 6		•
		C	Do		u	de	1	,	- 6		•
		C		G	ric	de 1	1	,	- 6		•

(a) Our notations

\square	Π										
HH	┿	Н	-	-		Н		Н	\vdash	Н	Н
Ш											
HH	++						Ļ				
H	╈	H					ł				
Ħ	\square	8					F				
HH	╈	H					ł				
Π	\square	Ц	-				┛				
HH	╈	Н	-	Η	H	Н		Н	H	Н	Н
Ш		Ħ									
HH	╈	Н	-	Η	\vdash	Η	\vdash	H		\vdash	H

(b) Cubic object

Ц								
Н								
Н								
Н	-						Н	-
н							Н	Н
н							H	H
Н								

(c) Elongated object. Notice the grid is thinner along the longer axis

d. Result:

Figure 8: Ambient occlusion values, accounting for the normal of the occluder and the direction of occlusion (80 to 130 fps)

- e. Limit: Needs even more memory to stored 3D texture.
- f. Advantages: more accurate due to reconstruct AO area in 3D space rather than cubemap.
- 6) Real-time shadow techniques 2004 siggraph
- Idea: Improve shadow mapping by using silhouette edges cue. _
 - 0
 - 1^{st} pass: Rendering normal depth buffer. 2^{nd} pass: Rasterize silhouette edges into temporary buffer (same size of 0 depth buffer) and storing intersection point coordinates.

3rd pass: Rendering shadow by using intersection point coordinates to clip 0 the depthbuffer.

- Advantages: _
 - Remove aliasing artifacts from traditional shadow mapping due to limited depth buffer resolution.

- **Disadvantages:** _
 - More complex algorithm on 2^{nd} and 3^{rd} pass to render silhouette shadow. This is the trade-off for shadow quality.
- 7) Fake soft shadow:
- Idea:
 - Rendering fake soft shadow by 0

 - 1st : rendering traditional shadow map
 2nd : employ depth information from 1st rendering to extend the shadow smooth boundary outward (smoothie)
 - 3rd : combine normal shadow map with extended soft shadow boundary

• Result : qualitative improvement of shadow with cheap fake soft shadow (compared to real soft shadow methods that requires many texture sampling (i.e. percentage soft shadow))

- Disadvantages:
 - Fake shadow: shadow becomes bigger rather smaller due to area light source.